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The equations describing the steady two-dimensional flow of a dilute suspension of 
macromolecules, a non-Newtonian fluid, are numerically modeled using a finite-difference 
technique. The flow domain is composed of a parallel-walled inflow region, a contraction 
region in which the walls are rectangular hyperbolas and a parallel-walled outflow region. 
The problem is formulated in terms of the vorticity and stream function along with explicit 
dependence on the deviatoric stresses. For a Newtonian fluid the relationship between 
stress and deformation rate is a linear one; however, for a non-Newtonian fluid the relation- 
ship is more complex. Here the constitutive equation used is a three constant Oldroyd 
equation which is valid for dilute polymer solutions. Due to a singularity in the trans- 
formation to a natural set of coordinates (with respect to the contraction boundary) a 
Cartesian grid system is used throughout the domain. The irregular grid structure at the 
curved boundaries necessitates developing a method for determining the boundary values 
of the vorticity, stream function and stresses. An explicit dxerencing scheme is used to 
model the governing equations, with the advection terms in the equations modeled using 
upstream differencing. The effect of numerical viscosity on the flow structure is examined 
with respect to the boundary layer thickness along the curved boundary and, in addition, 
contour plots of the flow variables are presented for both the non-Newtonian fluid and the 
Newtonian solvent fluid. 

1. INTRODUCTION 

The equations governing the flow in the two-dimensional flow domain are found 
from first principles and an appropriate rheological equation of state. Figure 1 shows 
the flow domain with the contraction boundary given by xy = 0.08. As is seen from 
the figure, the domain is divided into three regions: a l-in. inflow region, a l-in. 
contraction region, and a 0.5-in. outflow region. The inflow and outflow regions allow 
for uniform entrance and exit conditions to be specified and, due to the symmetry of 
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the domain, one need only solve for the flow in half of the field. Such a contraction 
region is of interest since along the centerline the flow is irrotational and solenoidal, 
hence a pure straining motion. This type of extensional flow can be of interest in 
examining molecular elongation and variations of intrinsic viscosity with longitudinal 
gradient [l]. For water and most gases the equation of state is found to be simply a 
linear relationship between stress and deformation rate over a wide range of values of 
the latter; however, for dilute polymer solutions, the equation of state, or constitutive 
equation, is more complex. Giesekus [2] (or [3]) has shown that dilute solutions of 

FIG. 1. Flow domain. 

polymers obey the Oldroyd equation [4] to first approximation. Unfortunately, the 
Oldroyd constitutive equations coupled with the appropriate conservation equations 
form a system of equations which are intractable analytically in this two-dimensional 
contracting flow. 

It is necessary then to resort to numerical techniques to solve the governing system 
of equations; in particular, the finite-difference technique is used in this investigation. 
Gatski [5] has applied the finite-difference method to a time dependent one-dimen- 
sional Oldroyd model equation (valid along the centerline of this contraction) which 
included advection terms which were missing in previous numerical work, such as 
that by Townsend [6], who employed a finite-difference technique on an Oldroyd 
equation for rectilinear flow in a straight pipe of circular cross section. Gatski [5] 
found that the time increment restriction was rather severe for the proposed explicit 
scheme, thus requiring alternatives such as an implicit scheme or a steady-state 
analysis. Since the purpose here is to set forth a method for examining the basic flow 
structure of the non-Newtonian fluid in the domain, a steady-state analysis is quite 
sufficient. The only feature of the transient problem is the oscillatory behavior of the 
flow variables [5, 61. 
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A Cartesian grid system is used throughout the entire flow domain, including the 
contraction region (due to a singularity in the transformation to a more natural set of 
coordinates), thus creating an irregular grid cell structure adjacent to the curved 
boundary. At node points adjacent to the curved boundary symmetry conditions are 
derived for the different flow variables in order to solve the governing difference 
equations. Finally, the equations for the non-Newtonian fluid exhibit elastic propaga- 
tion effects [7], making it desirable to preserve the transportive property in the dif- 
ference equations. In order to do this, upstream differencing of the advection terms is 
used. This type of differencing causes artificial viscosity errors, the extent of which is 
analyzed in Section 5, but still allows adequate representation of the flow field at 
values of the ratio of molecular relaxation time to flow time scale less than one. 

2. THE MOTION AND NON-NEWTONIAN CONSTITUTIVE EQUATIONS 

In describing the flow of a dilute polymer solution (the non-Newtonian fluid), 
appropriate motion and constitutive equations are needed. Since in this investigation 
the fluid is incompressible (the motion then being isochoric and the velocity vector 
solenoidal) and there are no external body forces, the governing motion and consti- 
tutive equations [2, 31 for the flow of the dilute polymer solutions are 

i i i + U’Ui,j = --P,i + gikTk', (2.1) 

where 

(2.2) 

Ski = $(&.j + ui.k), (2.4) 

P is the pressure (P = -4 x trace of total stress tensor), ui and uj covariant and 
contravariant velocity vectors, respectively, R, = UL/v is the solvent Reynolds 
number based on the mean inflow velocity U and the half-width of the inflow region, 
L, v is the kinematic viscosity of the solvent (water) (= lO-2 cm2/sec), Ski is the 
contravariant strain rate tensor, h, is the molecular relaxation time (dimensionless), c 
is the concentration, [q] is the intrinsic viscosity and gij is the metric tensor. In 
general, throughout, subscripts and superscripts preceded by a comma indicate 
covariant and contravariant spatial differentiation, respectively, and a dot over a 
variable indicates partial differentiation with respect to time. Equation (2.3) can be 
recognized as the Oldroyd convective derivative [4] and the constitutive equation, 
Eq. (2.2), corresponds to the Oldroyd B fluid (the B fluid exhibits the positive 
Weissenberg effect, climbing up the inner cylinder of a coaxial cylinder device) [4]. 
The Oldroyd B fluid does not exhibit any shear thinning behavior, that is, change of 
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apparent viscosity with shear. Note that in the limit of zero relaxation time and 
molecular concentration the constitutive equation reduces to the usual Newtonian 
linear relationship between stress and deformation rate. Since the flow field under 
consideration is two-dimensional, the problem lends itself to a vorticity-stream 
function formulation. 

For an orthogonal coordinate system it can be shown that a scalar function of 
position and time, the stream function, identically satisfies the condition of a solenoidal 
velocity field (ufi = 0) if 

u1 = tgllg22)-1’z $2, (2.5) 

22 = -tg11g22)-1’2 ?b.l * (2.6) 

Now the vorticity is defined as the curl of the velocity and is given by 

OJZ = E%ii,n ) (2.7) 

where l lni is a tensor density, or permutation symbol, and wz is a pseudovector. The 
vorticity equation can be simply derived by taking the curl of Eq. (2.1), which, after 
some simplification, gives 

c;Jz + &Jj = &“+r z.31t * (2.8) 

Up to this point the equations have been derived in a completely general fashion. The 
generality was needed since at the curved boundary it will be necessary to know the 
vorticity, stresses, and deformation rates in an orthogonal curvilinear system which is 
parallel and perpendicular at the same boundary. For the interior of the flow domain, 
however, a Cartesian grid system is appropriate and the preceding equations can be 
greatly simplified. 

In a Cartesian system, for this flow, the velocity can be expressed as 

ui = 046 v>, *tx, VI, 01, (2.9) 

where the x and y directions for the flow field are as shown in Fig. 1 and the flow field 
is assumed steady. Now Eqs. (2.5) and (2.6) become 

24 = $?I, (2.10) 

* = -G, (2.11) 

where the subscripts x and y indicate partial differentiation with respect to that 
coordinate direction. The vorticity can now be expressed in the familiar form 

w = v, - u, cr.= -p 9% (2.12) 

where the superscript on w has been omitted since the only vorticity component is the 
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one perpendicular to the x-y plane. Since the flow is assumed steady, the vorticity 
equation, Eq. (2.8), can be written as 

uw, + VW, = ~ a(+, w) = g; _ Tz + ( 22 
a(x, Y> 

T - ew . 

Finally, the stress equation, Eq. (2.2), can be expanded to give 

P + h,[UT1, + VT? - T22uy - Pv,] 

= w + c[rll) 
RS S” + 2 [& + usi2 - s22u, - S%J, s 

P + hl[UT~ + VT:’ - 2PU, - 22&P] 

_ 2(1 + +?I) 
RS sll + + [us: + vsy - 2s%, - 2S1lu,], 

s 

T22 + hl[UT: + VTfj2 - 2712v, - 2Pv,] 

= 20 + 47113) 
& s22 + 2 [US;“,” + vsi2 - 2s%, - 2&Pvy], 

s 
where 

P = 66% + %> = H%LJ - &m), 
p zz -422 = u, = -v, = &, . 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

All that is needed now to form a well-posed problem is the specification of 
the boundary conditions. 

3. BOUNDARY CONDITIONS 

In Equation (2.12) it is necessary to specify either the value of # (Dirichlet condition) 
or its normal derivative (Neumann condition) along the boundaries of the flow 
domain. Here we will do the Dirichlet problem and begin by specifying the values of 
the stream function at the entrance to the flow domain. These values are easily found 
by integrating the inflow velocity profile. Assuming that at the entrance to the inflow 
region the velocity profile is parabolic, the distribution of stream function values at 
the entrance to the domain can be written as 

w, Y) = (y/2)(3 - ~2)~ x < -1, (3.1) 

where -1 is the nondimensional streamwise location of the entrance to the inflow 
region (see Figs. 1 and 2). Here the stream function value at y = 0, the centerline, has 
been taken equal to zero. Along the solid wall the value of the stream function must 
also be constant and from Eq. (3.1), evaluated at y = 1.0, is equal to unity. The 
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condition at the exit of the outflow region is difficult to specify accurately. In this 
investigation the straight outflow section was assumed to be sufficiently long that the 
u velocity was simply a function of y. Computational experiments indicated that this 
assumption was quite satisfactory and no adverse behavior at the exit resulted. In 
summary, the conditions on # along the boundary of the flow domain are 

a) = 0.0 along centerline, 

# = (y/2)(3 - JP) at entrance, 

* = 1.0 along solid boundary, 

(3.2) 

(3.3) 

(3.4) 

and 

$(x, Y> = ?Nv>, x > 1.5, (3.5) 

where 1.5 is the nondimensional streamwise location of the exit to the outflow region 
(see Figs. 1 and 2). 

FIG. 2. Cartesian grid system. 

Now consider the vorticity equation. In the Newtonian limit the right-hand side of 
Eq. (2.13) would be proportional to the Laplacian of vorticity and, once again, 
either the function or its normal derivative must be specified along the boundary of 
the flow domain. From this one can infer that for the non-Newtonian problem both 
the vorticity and stresses need to be specified along the boundaries of the domain. Let 
us first determine the vorticity conditions. 

Along the centerline (v = 0) and at the entrance the vorticity is determined by 
differentiating Eq. (3.1). Along the parallel-walled section of the solid boundary and 
at the exit of the domain the vorticity is given by Eq. (2.12), subject to the conditions 
of nonporous solid walls and a nonevolving flow in the streamwise direction, respec- 

581/27/1-4 
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tively. Finally, the specification of the boundary condition along the curved section of 
the boundary requires additional analysis. 

The above statements about vorticity hold true for the curved boundary but with 
respect to a coordinate system which is parallel and perpendicular to the boundary. So 
it is first necessary to specify the above conditions in this orthogonal curvilinear 
system and then transform them back to the Cartesian system (see Appendix A for 
the construction of the coordinate system). In order to specify the vorticity along the 
boundary, the expressions for the velocities in the curvilinear system must be known. 
Using Eqs. (2.5), (2.6), and (A16), one obtains for the physical components of the 
velocity vector 

44) = (4(+2 t -q2)P4 vi7 3 (3.6) 

44 = -14(P + r2)Y4 h 5 (3.7) 

where the subscripts (b and 77 indicate partial differentiation with respect to that 
coordinate. From Equations (2.7), (3.6), and (3.7) the vorticity can be written in the 
curvilinear system as 

w = J-Yk;h2U(r)Nm - (g:~“4m~ = -2(P + ~2>“2<~d,, + AA (3.8) 

where J is the Jacobian of the transformation and is equal to ( g1rg2,)1/2. Since o is 
everywhere perpendicular to both the x-y and &T planes, Eq. (3.8) can be used to 
determine the vorticity boundary conditions along the curved wall (subject to the 
condition of zero tangential and normal velocities and SLdd = 0). In summary the 
vorticity boundary conditions are 

w=o along centerline, (3.9) 
w = -3y at entrance, (3.10) 

UJ = -9L along solid boundary (straight section), (3.11) 
w = -2[#~~ + (0.08)2] t,b,,n along solid boundary (curved section), (3.12) 

w = -*w at exit. (3.13) 

Next let us examine the stress conditions. 
Since the flow is symmetric about the centerline, the + shear stress equation, 

Eq. (2.14), can be written here as 

p12 + u~17~&2 = 0, (3.14) 

where +“)12 (- G2 - 2R;?S12) is the extra stress due to the presence of the molecules 
and along the centerline is equal to T l2 due to the fact that the Newtonian stress is 
zero there. From the solution of Eq. (3.14) one can see, that if the molecules are 
unstretched at the entrance to the flow domain, the G2 shear stress boundary condition 
along the centerline of the flow is zero. A cursory treatment of the normal stress 
equations, Eqs. (2.15) and (2.16), quickly reveals that these equations are rather 
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cumbersome to handle as boundary conditions along the centerline, even with the use 
of flow symmetry conditions. As will be seen in the next section, however, the dif- 
ferencing scheme used on these equations makes it unnecessary to use these conditions. 

At the entrance to the flow domain the flow is assumed parallel: therefore, the 
stress conditions applicable at the entrance are 

7-12 = 2(1 + c[?jJ)(l/R,) s=, (3.15) 

+ = (8/R,) h,~[y](Sl~)~, (3.16) 

722 = 0.0. (3.17) 

Note that the above conditions on the shear and normal stresses hold for any parallel 
flow. Let us now consider the boundary conditions on the solid walls. Using the 
conditions that the tangential and normal velocities are zero along the parallel solid 
boundaries, one can obtain from Eqs. (2.14) through (2.16) the boundary conditions 
on the stresses there. The shear and normal stress conditions that result are given by 
Eqs. (3.15) through (3.17), thus indicating that the stress distribution on the solid 
walls (straight) behaves as though the stress distribution were along the centerline of a 
parallel flow. In order to determine the conditions on the stresses for the curved 
boundary it is necessary to formulate Eqs. (2.14) through (2.16) in terms of the +v 
coordinates and use the conditions of zero normal and tangential velocity. The 
resulting conditions on the physical components of the shear and normal stresses 
along the curved boundary (7 = 0.08) are 

T(h 7) = 2u + c[rllW~s) s<+, rl), (3.18) 

7th 4) = @3/K) &c[d(S(~> ‘I))~, (3.19) 

d’?, 7) = 0.0, (3.20) 

where along the boundary 

SC+, 7) = (V + @.08)2)1’2 #,,n . (3.21) 

However, unlike vorticity, which is the same in both coordinate systems, these stress 
values must be converted to the Cartesian system. The transformation law for the 
physical component of a second-order tensor from the curvilinear system to the 
Cartesian system can be written as 

Tij = x,jx,“T(l, k), (3.22) 
where 

x,j = WlW:, (3.23) 

xiz = axzpi?. (3.24) 

Here the 4j coordinates are Cartesian coordinates and the x2 are (4, 7) coordinates. 
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Using these transformation equations and the expressions for the shear and normal 
stresses in the curvilinear system, one can obtain the Cartesian components of these 
stresses along the curved boundary, 

- 0.32(@ f (0.08)2)1’2 ~I~[~](1/RJ(~,,n)2, (3.25) 

-P = 0.16(1 i c[~])(l/R,) yi,q t- 4(+2 + (0.08)2)1’2 
x (4 + <P + (0.@3>2>1’2> W/Q c[~1(L>“~ (3.26) 

,r22 = -0.16( 1 + c[~])(l/R,) #,n + 4(+2 + (0.08)2)1’2 

x (-4 + CV + (0.‘W2)1’2) W/R,) +11(&m)“. (3.27) 

Now that the stress conditions along the solid walls have been specified all that 
remains in the specification of the boundary conditions is to determine the stress 
behavior at the exit of the domain. These conditions can be easily determined if one 
recalls that at the exit of the domain the flow was assumed parallel; hence the same 
assumption here allows us to use the stress conditions, Eqs. (3.15) through (3.17), for 
the exit boundary conditions. Finally, for completeness, the boundary conditions on 
the strain rates, Eqs. (2.17) and (2.1 S), are obtainable directly from the stream function 
and stress distributions already presented by applying the Newtonian limit of zero 
molecular relaxation time and zero concentration and using the fact that the 
Newtonian stress and the strain rate are linearly related by 2R;l. 

Now that the boundary conditions have been specified the system of differential 
equations, consisting of the stream function equation, Eq. (2.12), the vorticity 
equation, Eq. (2.13), and the stress equations, Eqs. (2.14) through (2.16), can be 
numerically modeled. 

4. NUMERICAL MODELING OF THE NON-NEWTONIAN EQUATIONS 

Before the equations can be discretized, a computational grid must be established 
and the location of the dependent variables defined. In this investigation a Cartesian 
grid is defined on the x-y plane of the flow domain (see Fig. 2). In the inflow region 
the grid spacing is 4 x 1O-2 and in the remainder of the domain the spacing is 2 x 10e2 
(note that all spatial variables are scaled by L = 1 in.). This allows for better resolution 
in the contraction and outflow sections. With these spacings the inflow region has 
25 grid points in the cross-stream and streamwise directions, the contraction and 
outflow regions have a maximum of 50 grid points in the cross-stream direction and 
a total of 75 grid points in the streamwise direction. At first glance it may appear 
advantageous to transform to the (4,~) coordinate system described in Appendix A 
since in that system the boundary is simply another coordinate line (7 = 0.08). 
However, as is shown in Appendix B, transforming to the (4,~) system creates a 
mathematical singularity in the flow domain thus making this system unacceptable. 
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Figure 3 shows the location of the different variables on a typical square grid cell in 
the computational mesh. 

Having defined the locations of the variables, let us first difference the stream 
function equation, Eq. (2.12). If the grid spacing in the x and y directions is equal, 
this Poisson equation can be differenced to second-order accuracy using the “5-point 
formula”; 

where A2 (= Ax2 = Ay2) is the grid spacing squared. One of the most commonly 
used techniques for solving the stream function equation is the iterative method of 

+i, j+l *i+l.i+l 

wi. j+l wi+l, j+l 
I2 

T i,i+l ~‘2i+l, j+l 

512. . 
I.I+l “i+i/Z, j+l 

cp. 
1+1, j+l 

Y 

t 
x 

“i, j+1/2 ?+I, j+l/2 

+i,j %+I12 j *i+l, j 

wi. j wi+l, j 
12 

r i.j T’2i+l, j 

S”i j S12i+l, j 

FIG. 3. Location of dependent variables in a typical grid cell. 

successive overrelaxation (SOR). Using this method, one can write the algorithm for 
the stream function equation at the (i,j) point as 

where /3 is the relaxation parameter (computational tests yielded an optimum ,8 N 1.8), 
and the superscripts in parentheses indicate iteration level. The convergence criterion 
used for this discretized equation (and the remaining equations) is 

(4.3) 
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where the 1 j denote absolute value and E = 1O-7 for this stream function equation. 
The next equation to be modeled is the vorticity equation, Eq. (2.13). 

A cursory look at the vorticity equation reveals that second-order centered dif- 
ferencing of the advection terms would yield a difference equation with no explicit 
dependence on the variable wi,? . In addition, if one uses this type of differencing on 
the vorticity equation for a Newtonian fluid, it can be shown [8] that undue amplifica- 
tion of the truncation error in the advection term results as the Reynolds number 
increases. An alternative is to use unidirectional or upstream differencing of the 
advection terms. The major drawback of this scheme is the artificial viscosity errors 
due to the first-order accuracy of the difference scheme. Since the artificial viscosity 
errors are proportional to the mesh spacing, the effect of this error on the flow can be 
examined by varying the grid size. This type of check on the system can be made at 
the interface between the coarse (inflow region) and fine (contraction region) mesh. 
From the smooth variation of the variables across the interface between the two 
meshes, it was concluded that the artificial viscosity errors were unimportant in this 
region (although farther downstream in the contraction region this error was found 
to be significant). In addition, this is a viscous effect and the extra effect of the non- 
Newtonian fluid is its elastic response to the flow field and this elastic behavior would 
not be affected. In spite of the artificial viscosity errors it would appear from the 
above dicussion that upstream differencing would be best suited for this problem. 

Using upstream differencing of the advection terms in Eq. (2.13) and assuming 
equal grid spacings, one can write the discretized form of the vorticity equation as 

where 

u = d-1($&J+, - Qk,d = ~-%h 3 (4.5) 

c = -Ll-y~i+l,j - $&j) = --d-‘Ll,&j , (4.6) 

Now with the form of Eq. (4.4) it would appear that SOR could be used to iterate to 
the solution matrix. However, the numerical experiments performed to determine the 
optimum relaxation parameter indicated that relaxation is destabilizing. It is thus 
necessary to revert to a slower (but stable) iteration method; the Gauss-Seidel method 
was tested and found acceptable. Using this method, one obtains from Eq. (4.4) 

(4.7) 
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Here the stresses are taken as fixed forcing functions in the iteration of Eq. (4.7). The 
iterations continue until the convergence criterion analogous to Eq. (4.3), with 
E = 1O-6, is met. It should be noted that along the solid boundary it would be neces- 
sary to know the vorticity at the wall, which for the straight sections in the inflow and 
outflow regions is given by Eq. (3.11) and (3.13). The difference approximation to 
this equation can be found by expanding #i,j=J+l about the boundary j = J and, 
using the no-slip condition to obtain 

(4.8) 

In addition, in the iteration procedure this wall value is held constant. Let us now 
difference the constitutive equations. 

Since the viscoelastic constitutive equations exhibit elastic propagation behavior, 
it would be desirable to maintain the transportive property, at least in connection with 
the stress advection terms. Then applying the Gauss-Seidel method (relaxation 
methods proved to be destabilizing) to the first-order difference approximations to 
Eqs. (2.14) through (2.16), one finds the following algorithms for ~:r~ , &j+t and 
&j+t, with the stress advection terms upstream dilferenced and the strain rate 
advection terms centered differenced, 

+("+') 
z++.j+$ = [l + &(I ld I + I v l)it*.it* A-1 

- 2hlS?it.ittl-1 1’1 ( ’ “1, u)itt,jtt T::‘,“Ij+# 
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where 
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p2 + +j. rtl.i-!-* = t p2 + Tji,, j+l + p2 + q-ji,, 3 9’ 

+ p2 + +ji,j+l + p2 + $ji*..J 
(92 - -g 

zt+Jif 
= a [(F2 - +ji+, j+l + p2 - -+j. 

L+lJ 

+ p - +-), j+l + p2 - +) 
i.j 

I 

and variables without superscripts are taken as fixed in the inner iteration. Note that 
the discretized strain rate equations are center differenced with respect to their grid 
locations and that in the Newtonian limit the shear and normal stress difference 
approximations also become second-order accurate with respect to their grid loca- 
tions. In addition, from Eqs. (4.9) through (4.1 l), it is seen that each variable is 
calculated successively at each point in the computational mesh; that is, for each 
node point location (i, j) the G2 shear stress is calculated first, then at the 
corresponding cell center (i + +, j + 4) the normal stresses G1 and 722 are calculated. 
In this way, after one sweep through the entire mesh each variable has been calculated 
once with the strain rates, vorticity and stream function fixed variables. Since the 
stress boundary conditions are not as straightforward as the vorticity and stream 
function, it is advantageous to examine their difference approximations in some detail. 

Along the centerline the shear stress condition poses no problem since it is zero 
there; however, as was discussed in the previous section, the normal stresses will be 
troublesome. Referring to Eqs. (4.10) and (4.1 I), one can see that for these normal 
stress values to be used the v-velocity must be positive. Since this is never the case it is 
unnecessary to explicitly specify the normal stress values along the centerline. At the 
entrance to the domain the stress conditions are given by Eqs. (3.15) through (3.17). 
The discretized shear stress distribution is easily specified since the S2 strain rate 
distribution at the entrance can be directly obtained from the known stream function 
distribution (3.1). The discretized G1 normal stress distribution along the entrance is 
found in a similar manner because of the simple relationship to S12, and, of course, 
the discretized 722 normal stress distribution is trivial. Now recall that the normal 
stresses are defined at the center of a grid cell, one-half mesh spacing downstream 
from the entrance, and note that the above conditions are applicable at the entrance. 
It is necessary then to use Eqs. (4.10) and (4.11) to solve for T$++ and Tg,+& , knowing 
the stress distribution one-half mesh spacing upstream. Due to the nature of the flow 
at the exit, the stress conditions there were handled in the same manner as the stress 
entrance conditions since the differential formulation of the two sets of conditions 
were the same. The only difference here is that the S2 strain rate is based on a cal- 
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culated discrete distribution of velocity values at the exit, whereas at the entrnace the 
velocity distribution was a specified continuous distribution. Along the straight solid 
boundaries, the specification of the discretized stress condition, once again given by 
Eqs. (3.15) through (3.17), is more direct. Using the conditions of zero normal and 
tangential velocities, one finds for the stress conditions there 

$J = 20 + 4~3) K1A-2&,J-l - &d, (4.12) 

T::J = %c[ql K1~-‘[~i,J-l - && (4.13) 

T$ = 0.0. (4.14) 

Up to this point the equations have been discretized using equal grid spacings; how- 
ever, at the points adjacent to the curved boundary, unequal spacing occurs and the 
form of the difference equations changes slightly. 

First, consider the stream function equation, Eq. (2.12). It will be sufficient here to 
consider unequal spacings in only one direction. For example, in the x-direction, if 
the functions #(x+ , y) and #(x - dx, u) (or #+,j and && are expanded about the 
point #(x, y)(&,) and the resulting series expansions solved simultaneously for I+&.~ , 
the following first-order difference equation results: 

# ax = W+h vx - v*i.j A+4 
(A+x)2 vx + A+x(Vx)2 ’ (4.15) 

where 

and #+,j = 1.0. If the spacing is irregular in the y-direction or irregular in both 
directions the appropriate finite-difference expressions for the derivatives would be 
used in discretizing the stream function equation. Nevertheless, no matter what 
discretized form of the stream equation is used one can always solve for 4i.j and obtain 
an equation analogous to Eq. (4.2) with the same /3. 

Now consider the vorticity equation, Eq. (2.13), at points adjacent to the curved 
boundary. In this equation the vorticity derivatives only appear in the advection 
terms and, due to the upstream differencing, the finite-difference approximations are 
only first-order accurate even with equal grid spacings. The simplest first-order- 
accurate forward difference approximation to these derivatives for the irregular grid 
spacing, in the x-direction, for example, can be easily written as 

w 5 = (w+.j - wi,j)/A+x* (4.16) 

Since the irregular spacing occurs only at the curved boundary the value of w+,j 
(or w6,+) must be determined from the discretized form of Eq. (3.12). In addition, 
from Eq. (2.13), it would also appear that the stress derivatives at the points adjacent 
to the boundary would have to be discretized using unequal grid spacings. However, 



STEADY NON-NEWTONIAN FLOW 57 

numerical experiments indicated that if the grid system extended beyond the 
solid boundary (see Fig. 4) stress values at the exterior points could be found 
making it unnecessary to use irregular differences at the curved boundary for the 
stress derivatives. Therefore, in order to solve the vorticity equation at points adjacent 
(interior) to the curved boundary it is necessary to know the value of the vorticity on 
the boundary and the stresses exterior to the boundary. Along the curved boundary 
the vorticity is defined by Eq. (3.12). Following a procedure similar to that used in 
deriving Eq. (4.8), but now expanding about the boundary in the v-direction along a 
line of constant 4, the discretized form of (3.12) can be written as 

w = 4($2 f (0.08)2)(1.0 - #d,,-)(0.08 - T-)-~, (4.17) 

where q- is a coordinate location interior to the boundary. Now let us consider the 
stresses exterior to the boundary. 
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FIG. 4. Grid cell structure adjacent to solid boundary. 

It is necessary to know the Cartesian values of the stresses outside the boundary; 
however, along the curved boundary any symmetry statements about the variables 
are with respect to the # - 7 system. Therefore, exterior to the boundary the trans- 
formation law equation (3.22) is needed, and interior to the boundary it is necessary 
to know the stresses in the 4 - ~7 system. Since the stress values in the interior of the 
flow are known with respect to a Cartesian frame these values must be transformed 
to the curvilinear system. In equation form the above two statements can be written as 

+* = Xk*Xjz +(I, k) (4.18) 
and 

%(I, k) = X,Trj W, (4.19) 

where the superscripts on the left of the stresses denote exterior and interior. The 
problem that remains is to relate “~(1, k) to %(Z, k) along a line of constant +. 
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Due to the complexity of the constitutive equations it is necessary to resort to a 
qualitative argument to determine the proper symmetry conditions across the 
boundary. Such arguments must assume that very near the wall, curvature effects are 
small thus making the stream function values across the boundary, along a line of 
constant 4, symmetric to second order and, the normal and tangential velocities 
approach zero. In the previous section the wall stress conditions were found to 
correspond to the stress equations valid along the centerline of a parallel flow. In this 
type of flow the conditions on either side of the “centerline” (wall) for the non- 
Newtonian shear stress and nonzero normal stress (both are related to S(+, 7)) are 
clear. Roth the stresses are symmetric and in equation form can be written for the 
$J-T system as 

(4.21) 

where the coefficient is due to the use of physical components. The condition on the 
remaining normal stress ~(7, T) does not appear to be obtainable from this analogy; 
however, since this stress component is zero along the boundary (as it would be even 
in the Newtonian limit) it is safe to assume that ~(7, q) is antisymmetric across the 
boundary 

eT(r/77) = -g”” lint 

gz2 lext 
“T(m)* 

Now Eqs. (4.18) and (4.19) can be used and the calculated Cartesian stresses sub- 
stituted into the vorticity equation. A comment concerning Eq. (4.19) is in order. As 
can be seen from Fig. 4 it is very unlikely that the interior stress points needed in that 
equation will lie along a line of constant x or y in the Cartesian system. It is thus 
necessary to use two-way linear interpolation [9] from the nearest Cartesian stresses, 
which are defined at interior node points, to determine the appropriate stress values 
to be used in Eq. (4.19). Of course the validity of such an approximation can only 
be determined by numerical experiments. The numerical tests on this approximation 
were satisfactory, giving vorticity values which were both uniform and consistent near 
the curved boundary. Even with the above irregular differencing and the necessity to 
go outside the boundary for the stresses, it is still a small matter of algebra to solve for 
UJ~,~ and form an equation similar to Eq. (4.7). Finally, let us examine the constitutive 
equations, Eqs. (2.14) through (2.16), at points adjacent to the curved boundary. 

The first-order difference approximations, for unequal grid spacing, of the stress 
derivatives are similar to those for the vorticity, with the strain rate derivatives handled 
in an analogous manner. These difference approximations require the values of the 
strain rates and stresses along the curved boundary, which can be obtained from 
Eqs. (3.25) through (3.27). The discretized forms of these equations yield the following 
values of the stresses: 
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4+(1 + c[q]) R,'( Icm."i; 'B ) 

- 1.28($’ + (0.08)2)1’2 X&l R;’ ( *‘*“b; lcrB i2, (4.23) 

0.32(1 + c[~]) R,l ( “-2; ‘B ) 

f 16(rj2 + (O.OS)")""(+ + (4" + (0.08)2)"")h,R,1c[q] ( "+i; 'B j2, 

(4.24) 

-0.32(1 + c[s]) R,l (++j 

+ 16(4' + (0.08)2)1'2(-~ + (4" + (0.08)2)1'2) hlR;lc[~](‘dsnb,; ps)2, 

(4.25) 

*B = 1.0. 

Having specified the non-Newtonian stress boundary conditions, one can easily 
obtain the strain rate boundary conditions. Recall that in the Newtonian limit of zero 
molecular relaxation time and zero concentration the non-Newtonian stresses reduce 
to the Newtonian stress values. Since the Newtonian stress values are linearly related 
to the strain rate values by R,/2, the boundary values for the strain rate can be easily 
obtained from Eqs. (4.23) through (4.25). Now that the equations for the stream 
function, vorticity, strain rates, and stresses have been differenced along with the 
specification of the discretized boundary conditions, it is necessary to place these 
equations in sequences to form an outer iteration loop. 

Since the Newtonian values of all the flow variables are known for this contraction 
[l], these values were used as starting conditions in this non-Newtonian problem. 
The stress equations, Eqs. (4.9) through (4.1 I), were iterated first (an inner iteration) 
using the Newtonian values. The new stress values obtained from the iterated stress 
equations were used in the vorticity equation. Along with these new stress values, the 
previously calculated stream function values and appropriate boundary conditions 
were used in the calculation of the vorticity. However, before these new vorticity 
values could be used in the stream function equation, it was necessary to use a weighted 
average on the calculated vorticity values [IO] that is 

wi,f = K%.jlouter iteration k 

+ (1 - K) wi,jfouter iteration 5+1 3 (4.26) 

where K is a variable weighting factor. These weighted vorticity values were then 
used in the iteration of the stream function equation. Finally the iterated stream 
function values were used to obtain the strain rate values (no iterations). This entire 
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process formed one outer iteration loop. It should be pointed out that the coupling 
of these equations is rather weak, for example, the stress terms in the vorticity 
equation are held fixed throughout the iteration of that equation. This of course 
causes a slower convergence of the outer iteration loop but from numerical tests 
was found to be a stable computational system. The outer iteration process was 
continued until the following convergence criteria were met: 

(4 
( ‘1.0 - yi,j Iouter iteration 7~ 

YLY,)louter iteration r;tl 1 
< E’“‘, (4.27) 

where 

*iA 

i. 

ol=l 10-b 

%,j a=2 10-a 
7;“; = Tyj i a: = 3 10-7, zzz &. 

I 

T?l z+i,j+f a=4 10-7 
3-22 \ zi-+,i++ cx = 5 IO-' 1 

5. COMPUTATIONAL RESULTS 

Before presenting some of the non-Newtonian results it is first necessary to specify 
the solvent Reynolds number R, , the concentration c, the intrinsic viscosity [7] (note 
that the concentration and intrinsic viscosity always appear as c[7]) and the molecular 
relaxation time X, . Let us choose as an example a value for R, of 5000 [l], which 
corresponds to an entrance velocity of 20 cm/set, based on the previously defined 
length scale and the viscosity of water (=lO-%m2/sec). An estimate for the value of 
c[7] can best be found by considering the polymer Poly(ethylene oxide), or Polyox 
(WSR-301). The intrinsic viscosity for this polymer has been found to be 
approximately 20 dl/g [ 111. Normally the intrinsic viscosity is dependent on shear but 
here it is assumed constant. Experimental results (11) indeed show that the intrinsic 
viscosity is relatively constant at concentrations of the order of 50 ppm (parts per 
million by weight) and below. Thus for Polyox at this concentration the term c[7] 
would be of the order of 10-l. Numerical tests indicated, however, that for c[7] = 0.1 
there was only a slight change in the magnitude of the variables relative to Newtonian 
starting values. It was decided that a more interesting value would be c[7] = 1.0, 
which would effectively raise the stress levels by a factor of 2. Since the Reynolds 
number R, and the term c[7] have been specified, the only remaining parameter to 
be set is h, . Two values of h, were tested : X, = 5.0 x 1O-3 and 9.0 x 10-3. The 
difference in the behavior of the flow variables between the two parameters was 
rather slight and only the larger value of h, (= 9.0 x 10-3) will be presented here. 
Having specified the Reynolds number, we can examine the behavior of the flow 
variables in the domain. 

The stream function contours are presented in Fig. 5a. Since the motion is steady 
the streamlines represent the paths (streaklines) that tracer elements would follow if 
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injected into the flow. Due to the deceleration of the streamwise velocity near the 
solid boundary in the inflow region, the flow separates and, as is clearly seen, a large 
recirculation region develops in the corner. A picture of relative velocity magnitude 
and direction can also be seen from this figure by noting the equispaced stream 
function values. At the entrance to the domain the stream function values clearly 
indicate the relative magnitude of the velocities across the entrance (the velocity being 
given by 0.2/(spatial distance between neighboring streamlines of equal separation)). 

Y 

t 
x 

0.2 

-~----------------~ 

FIG. 5a. Stream function contour lines for the non-Newtonian fluid. 

For example, the distance between the centerline and $ = 0.2 is approximately 
one-third the distance between z,L = 0.8 and # = 1.0; hence the average total velocity 
near the centerline is about three times as large as the average total velocity in the 
vicinity of the wall. At the exit of the domain the picture has changed; using the same 
two streamlines one finds that the distances are now in a ratio of about three to two. 
What has happened is the velocity profile has become more blunted at the exit and if 
allowed to continue downstream would eventually evolve to a parabolic profile over 
the width of the region. This streamwise variation is rather weak and computational 
checks, by extending the outflow region father downstream, on the assumption of a 
fully developed flow showed that the results upstream of the exit were not affected. 
Comparison of these results with the corresponding Newtonian streamlines (Fig. 5b) 
indicates that the flow has not changed throughout most of the domain; the only 
change that has occurred is in the size of the recirculation region in the corner of the 
domain. As can be seen this recirculation region has gotten smaller. This means that 
the separation point has moved farther downstream; implying that the non-Newtonian 
fluid velocity must not have decelerated as quickly as the Newtonian velocity [l]. The 
reason for this slower deceleration is the increased elasticity effects as retardation time, 
given here by h,(l + &I)-l, increases [l]. If a change in the flow occurred in the 
inflow, some sort of change in the flow should occur near the wall in the lower part of 
the domain. Unfortunately, it was here, near the wall, that artificial viscosity effects 
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dominated, thus prohibiting any elastic effects from the constitutive equations to 
affect the flow. 

In Fig. 6 isovorticity lines are plotted for the non-Newtonian fluid. As expected 
from the comparison of both Newtonian and non-Newtonian stream function 
contours, there was no variation from the Newtonian behavior except in the corner 
region, and even here the change was slight. It will be shown shortly that in the 

FIG. 5b. Stream function contour lines for the Newtonian fluid. 

contraction region these contours provide an estimate of the boundary layer thickness. 
In addition, the boundary layer thickness is related to the magnitude of the artificial 
viscosity errors present in the computation. To see this let us briefly look at the 
velocity at a cross section of the contraction region; in particular, consider the point 
x = 1.7 downstream from the domain entrance (Fig. 7), since in this region of the 
contraction estimates on the boundary layer thickness can be made more precise due 
to the uniform deformation rate [l]. The displacement thickness 8* can be estimated 
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FIG. 6. Vorticity contour lines for the non-Newtonian fluid. 
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by calculating the area under the curves in Fig. 6 and dividing by the external mean 
velocity. This calculation then yields a displacement thickness of 6* = 0.0205. As a 
check on this computational result recall that for a linearly increasing free stream 
velocity (which is the case along the centerline of this contraction) the displacement 
thickness would be like 6” N (R,I,&,)- l12. (Notice here that this expression is rather 
vague as to a choice of multiplicative constant; if the above flow is likened to 
stagnation point flow then the appropriate constant is 0.65. However, for our pur- 
poses here the above expression will suffice.) Along the centerline at x = 1.7, &, is 
found to be equal to 15.0 thus the value of 6* is about 0.00365. As can be seen the 
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, 

FIG. 7. Velocity profile across contraction atlx = 1.7. 

computational and theoretical estimates of 6* differ by a factor of 6. This discrepancy 
can be explained by taking into account the effect of numerical viscosity. As a rough 
estimate of the additional viscous effect let us assume the error produced by the 
upstream differencing of the advection terms was of the order of vd/2, where d is the 
grid spacing (= 2 x 1O-2) and u is some local velocity. Taking v = 3.0 as a local 
characteristic velocity near the wall, one finds that the numerical viscosity is 3.0 x 1O-2 
(which corresponds to a computational Reynolds number of R, = 33.0). Now 
letting 6* N (Re,&-1/2 this new estimate gives a value of 0.0477 for the displacement 
thickness, which is more in line with the computational result. It thus appears that 

581l27/1-5 
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computational viscosity does indeed play a significant role in this region of the flow 
domain. Finally, from Fig. 7, if we assume that the boundary layer thickness 6 is about 
four times as large as the displacement thickness (as is the case for stagnation point 
flows) the computational results indicate that S N 0.08. Thus, returning to Fig. 6, it 
would appear the isovorticity lines emanating from the contraction wall tend to 
outline a region whose width is the boundary layer thickness 6. It should be noted at 
this point that attempts to use values of X, greater than 9.5 x 1O-3 (corresponding to 
a maximum 2Sh, N 0.3) resulted in instabilities in the stress equations. These instabi- 
lities may be attributed to a possible decoupling of the stress equations from the 
vorticity equation because of the artificial viscosity errors, or to the method of solution. 
Even though this is a steady-state method it may introduce time-like instabilities into 
the problem. This type of instability can be shown to occur for a one-dimensional 
model transport equation [12]. Let us now consider the stress contours. 

In Fig. 8a the P shear stress contours are plotted. An interesting check on these 
results is to see if the point of separation, as taken from the non-Newtonian stream 
function plot, corresponds to the point of zero wall shear [13]. Comparison of Fig. 8a 

FIG. 8a. Shear stress contour lines for the non-Newtonian fluid. 

with Fig. 5a indicates that the two points are in fact very close. An additional observa- 
tion about the stress levels can be made on the basis of estimates of boundary layer 
size and effects of computational viscosity. It was found in estimating the boundary 
layer thickness that the appropriate Reynolds number should be based on the 
numerical viscosity vd/2; this would imply that the stress levels here are indeed very 
small and have little effect on the vorticity dynamics. Comparison of the Newtonian 
(Fig. 8b) and non-Newtonian shear stress contours indicates that there is very little 
qualitative change between the two plots. This is consistent with the fact that the 
boundary conditions are essentially Newtonian conditions with an extra factor of 
(1 + c[v]), which accounts for the quantitative change in the shear stress contours. 
Therefore, the shearing forces in the flow are not significantly altered for this type of 
non-Newtonian fluid. Finally, let us examine the normal stress contours. 
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The + and 722 normal stress contours are plotted in Figs. 9 and 10, respectively. 
Comparison of the two figures clearly indicates the additional effects on the flow due 
to the presence of the molecules. In the inflow region of the flow domain both sets of 
contours are similar and divide the domain into two regions: a region closer to the 
centerline where the flow is accelerating downstream and a region closer to the solid 

FIG. 8b. Shear stress contour lines for the Newtonian fluid. 

wall where the flow is decelerating. In fact the confluence of the +?2 stress contours 
roughly indicates the growth of the boundary layer downstream through the contrac- 
tion. However, in the contraction region, the qualitative behavior of the G1 stress 
contours has changed substantially from that of the 722 stress contours. This qualita- 
tive change can be explained if one notes that in this region the molecules have aligned 
themselves with the principal axes of strain rate, with the deviation from the axes 
being a function of vorticity [14]. Hence, the qualitative nature of the + normal stress, 

0.6l124 

FIG. 9. G1 normal stress contour lines for the non-Newtonian fluid. 
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at least the molecular contribution, should be similar to the behavior of the strain 
rate eigenvalues, the extent by which the two are similar being a function of alignment 
with the principal axes. In addition, if one compares these non-Newtonian contours 
with the Newtonian 711 normal stress contours in Fig. 11 (recall for a Newtonian 
fluid 711 = -7”“) it is seen that the non-Newtonian + contours are qualitatively 

FIG. 10. 9 normal stress contour lines for the non-Newtonian fluid. 

FIG. 1 I. Normal stress contour lines for a Newtonian fluid. 

different from the Newtonian contours, whereas the r22 contours are qualitatively the 
same. This behavior is to be expected by a cursory comparison of the boundary condi- 
tions; the streamwise normal stress reflects the viscoelastic characteristics of the fluid 
whereas the transverse component exhibits essentially a Newtonian relationship. 
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APPENDIX A: CONSTRUCTION OF AN ORTHOGONAL CIJRVILIXEAR COORDINATE 
SYSTEMPARALLELANDPERPENDICULARTOTHECONTRACTIONBOUNDARY 

In order to obtain the proper expressions for the vorticity and stresses in the 
curvilinear coordinate system it is first necessary to determine the metric tensor for 
this new system. Let us begin by recalling that the equation of the curved boundary is 

xy = 0.08, (Al) 

where the origin of the Cartesian coordinate system is as shown in Fig. 1. Then a 
family of such curves would be given by 

7j = xy. 642) 

A family of curves perpendicular to those of Eq. (A2) can be obtained by requiring 
that the slopes be negative reciprocals of those of the 7,~ curves and then integrating; 
the resulting family of curves is then 

I$ = (x” - y2)/2. (A3) 

Therefore in terms of the (4,~) coordinate system, the Cartesian coordinates x and y 
are given by 

x = (4 + <p + q2y2p2, G44) 

y = (- 4 + (42 + 7j2)1/2)1/2. C45) 

Now the metric tensor simply relates the distance to infinitesimal coordinate incre- 
ments and is defined in the following manner. In a two-dimensional Cartesian system 
the incremental distance ds can be written as 

ds2 = dx2 + dy2. 646) 

The length ds can be expressed in terms of the ($, 7) coordinates by simply trans- 
forming contravariantly, then 

ds2 = gijdxidxj = g,,d@ + g2,dT2, L47) 

where the cross terms are zero in an orthogonal system. Using Eqs. (A4) through (A7) 
one obtains the nonzero components of the metric tensor for this two-dimensional 
(4, 7) coordinate system 

g,, = g,, = Cd” + 772)-1’2/2. (A@ 

It is also necessary to recall that differentiation in a coordinate system other than a 
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Cartesian system must take into account the dependence of the transformation on 
position. Hence one must generalize from partial differentiation to covariant dif- 
ferentiation (and contravariant differentiation). For example, the covariant derivatives 
of a covariant vector and a contravariant vector are 

Ajek = $$ - rikAi, 

where l-‘,l; is the second kind of Christoffel symbol, and is given by 

(All) 

Using Eqs. (A8) and (Al 1) one finds the Christoffei symbols in the (4,~) coordinate 
system as 

r:, = r& = r& = -c$/2(c$2 + $), (-412) 

ri2 = r:, = r;, = +2(p + g), W3) 
ri2 = 91~2 + T2), (A14) 
cl = ~(42 + $I. 6415) 

Finally, it is most convenient to only consider the physical components of the dif- 
ferent variables since in this orthogonal system there is no distinction between physical 
components and the components of mixed tensors. In equation form the physical 
components of a vector and a tensor can be written as 

a(i) = g:,i2ai = g;l-12ai (no summation), 

A(ij) = (giigjj)V ,+j = (giigjj)-l/2 Aij (no summation), 

(‘416) 

W7) 

where a(i) and A(ij) are the physical components of the vector and tensor, respectively. 
As can be seen from the above, once the metric tensor has been determined the 

basic structure of the coordinate system is established and the appropriate differential 
equations can be determined. 

APPENDIX B: DISCRETIZING ERRORS IN THE 4-7 COORDINATE SYSTEM 

The accuracy of the finite-difference approximations to the various derivatives in 
the differential equation is dependent on the grid spacing and higher order derivatives 
and, in addition, is also dependent on the choice of coordinate system. For example, a 
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first-order-accurate forward difference approximation of the first derivative in the 
q-direction would be 

#,, = *“+I*>; ‘&A - 9 $,,,, + higher-order terms, WI 

where ~4+~.~ and Lb are discretized grid locations of the variable # in the 4 - 7 
plane and 67 is the grid spacing in that system. It would then appear that as 4~ goes 
to zero the difference approximation more closely approximates the derivative; 
however, closer examination reveals that this is not the case at the origin of the coor- 
dinate system. Consider the error term in Eq. (Bl). The second derivative &,, can be 
expressed in terms of x and y derivatives of the Cartesian base system by 

where 

ax 
-qF= 2($2 + 7fyyp : (4” + T2)1’2Y’2 ’ 

ay -zy= qp + 77y(-41: ($2 + 7p)V)1P ’ 
a2x 1 
jp= 2(l$2 + ‘I”)‘/“(c$ + (4” -t 7)2)1/2)1/2 ! +I$&2 

- (cp + q)yf$7 (4” + 7)2)1’2) I7 

a2Y 
qz= qp + ~2)l!2(-41+ (4” + qy/y I l - q&z 

- (4” + qy(-;2+ (4” + q2Y2) I * 

It is clear from the above equations that a singularity exists at the point (0,O) in the 
$-T plane (which is also the origin of the Cartesian system) and, in addition, this 
same problem arises when the second derivative with respect to 4 is analyzed. From 
the above calculations it also appears that higher-order derivatives would retain this 
singular character, thus making higher-order difference schemes just as inaccurate. 
This problem is simply a consequence of the fact that the metric is singular at the 
origin and that variables calculated near the origin in the curvilinear system are not 
properly mapped into the Cartesian system. Numerical tests indicated, however, that 
this problem is isolated very close to the origin and that specification of the boundary 
conditions along the curved boundary in the +v system was not in error. 
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